First-principles Studies on Physical and Chemical Properties of Nanostructures
نویسندگان
چکیده
The physical and chemical properties of decorated graphene and graphene ribbons, single-layer III-V systems, three-dimensional carbon and BN foam, and transition-metal-molecular sandwich nanowires have been investigated by first-principle calculations and their potential applications have been predicted. First, it is shown that zigzag graphene nanoribbons (ZGNRs) can be converted into half metal when their edges are decorated by some chemical functional groups, and the half-metalicity is induced by chemical potential difference between two edges when one edge is decorated by electron-donating group like –OH and the other edge is decorated by electron-accepting group like –F,-NH 2 ,-N(CH 3) 2 ,-SO 2 ,-NO 2 and –CN, or by spin-polarized impurity state induced by isolated SO 2 group. In addition, no matter how trivial the potential difference between two edges is, the decorated ZGNR can be half metal as long as the width of ZGNR is sufficiently large. As ZGNRs are decorated by copper atoms, they are shown to be a unique host system for the realization of an extended planar tetracoordinate carbon (ptC) strips due to its highly delocalized in-plane π-electrons and intrinsic rigid structure. When they are decorated by scandium atoms, they are shown to be good candidates for hydrogen storage and the adsorption energy can be controlled by electric field. Second, graphene is also revealed to become half metal through selective chemical decorations, and by selective hydrogenation, it can become magnetic quantum dot arrays and its magnetic coupling or band gap can be tuned, which can be applied for magnetic data storage and light-emitting devices. Third, single-layer BN and some other hexagonal systems like AlN, GaN, BP, SiC, ZnO are studied. It is demonstrated that upon charge-injection some of them like BN and AlN can become magnetic or even half-metallic, which is clarified by using Stoner Criterion. As they are cut into zigzag nanoribbons with one or two edges unpassivated, some of them may become half metals, and the edge-reconstructions of the unpassivated edges are studied. Fourth, two kinds of 3D carbon and BN foam, one with hexagonal holes and the other with triangular holes and only pure sp2 carbon bonds, are designed, and they are shown to be stable and porous low-density carbon and BN allotrope with large internal surface area and strong bulk modulus. Finally, some transition-metal-molecular sandwich nanowires can become magnetic or even half-metallic from nonmagnetic through charge-injection, which is also clarified by using Stoner Criterion. For …
منابع مشابه
Synthesis of Magnesium Ferrite-Silver Nanostructures and Investigation of its Photo-catalyst and Magnetic Properties
In this research we first synthesized MgFe2O4 nanostructures via hydrothermal method using (Mg(NO₃)₂.6H₂O) and (Fe(NO₃)₃.9H₂O). The influence of concentration, surfactant, precipitating agent and temperature on the particle size and magnetic properties of the synthesised nanoparticles were examined. Then MgFe2O4-Ag nanocomposites were prepared by a simple chemical precipitation. The structural ...
متن کاملFirst-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface
First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...
متن کاملFirst-principles study on the electronic structure of Thiophenbithiol (TBT) on Au(100) surface
First principle calculations were performed using Density functional theory within the local spin density approximation (LSDA) to understand the electronic properties of Au(100)+TBT system and compare the results with Au(100) and bulk Au properties. Band structure, the total DOS and charge density for these materials are calculated. We found that the HOMO for Au(100)+TBT becomes broader than Au...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملStructural and electronic properties of N-doped TiO2 anatase nanoparticles and their effects on the adsorption of Hydrazine (N2H4) molecule: A first-principles study
We have performed a density functional theory investigation on the structural and electronic properties of pristine and Nitrogen-doped TiO2 anatase nanoparticles as the adsorbents for removal and degradation of hydrazine molecules in the environment. We have presented the most stable adsorption configurations and examined the interaction of hydrazine molecule with these doped and undoped nanopa...
متن کاملCalculation of Thermodynamic Parameters of [2.4.6] Three Nitro Toluene (TNT) with Nanostructures of Fullerene and Boron Nitride Nano-cages over Different Temperatures, Using Density Functional Theory
In this study explosive substance [2.4.6] three Nitro Toluene (TNT) was attached with nanostructures of fullerene (C24) and boron nitride nano-cages (B12N12). After that using B3LYP (Becke, three-parameter, Lee-Yang-Parr), a method from density functional theory (DFT), thermodynamic parameters of TNT with foregoing nanostructures, in different conditions of temperature, were computed. To this a...
متن کامل